

Viewing and Staging Changes

List changed files in your working
directory
$ git status

List changes to tracked files
$ git diff

List changes between staging and last
version of tracked files (--staged is a
synonym of --cached)
$ git diff --staged

View the changes in the last commit
$ git diff HEAD HEAD^

Add a file to the next commit
$ git add <file>

Add some of the changes (hunks) in <file>
to the next commit
$ git add -p <file>

Add all current changes to the next
commit
$ git add . / $ git add –all

Permanently mark a local file as
unchanged
$ git update-index --assume-

unchanged -- file

See all changes in a branch that came in
with the last pull operation
$ git diff <branch>@{1} <branch>

Create

Clone an existing repository to your
machine
$ git clone <url>

Create a new local repository
$ git init

Commit

Commit staged changes
$ git commit

Commit all local changes in tracked files
$ git commit -a

Change the last commit (Don‘t amend
published commits!)
$ git commit –-amend

Commit with an inline message
$ git commit –m “<message>”

Basic Commit History

Show all commits, starting with newest
$ git log

Show changes over time for a specific file
$ git log -p <file>

Who changed what and when in a file
$ git blame <file>

Branches & Tags

List local branches
$ git branch

List all branches (including remote)
$ git branch -a

Switch to branch (automatically tracks
remote)
$ git checkout <branch>

Create a new branch based on your
current HEAD
$ git branch <new-branch>

Create a new branch based on your
current HEAD and switch to it
$ git checkout -b <new-branch>

Delete a local branch
$ git branch -d <branch>

Rename a local branch
$ git branch –m <old-name> <new-

name>

Mark the current commit with a tag
$ git tag <tag-name>

Remotes

List all currently configured remotes
$ git remote -v

Show detailed information about a
remote (local and remote branch listing,
reference status)
$ git remote show <remote>

Add new remote repository
$ git remote add <shortname> <url>

Change a remote’s URL
$ git remote set-url <remote>

<url>

Rebase

Rebase your current HEAD onto a branch
(Don’t rebase published commits!)
$ git rebase <branch>

Abort a rebase
$ git rebase --abort

Continue a rebase after resolving
conflicts
$ git rebase –continue

Rebase by altering individual commits in
the process / rewrite history
$ git rebase –i <base>

Apply an existing from to the HEAD
$ git cherry-pick <sha1>

Apply a range of commits to the HEAD
$ git cherry-pick <sha1>..<sha1>

Network Operations

Download all changes from <remote>,
but don’t integrate into HEAD
$ git fetch <remote>

Download changes and directly
merge/integrate into HEAD
$ git pull <remote> <branch>

Publish local changes on a remote
$ git push <remote> <branch>

Push local changes to the tracked remote
branch of the current branch
$ git push

Delete a branch on the remote
$ git branch -dr <remote/branch>

…or
$ git push <remote> :<branch>

…or
$ git push <remote> --delete

<branch>

Publish your tags
$ git push –tags

Publish a newly created, local branch to a
remote
$ git push –u <remote> <branch>

Merge

Merge a branch into your current HEAD
$ git merge <branch>

Merge a branch into your current HEAD,
avoiding fast forward
$ git merge -–no-ff <branch>

Use your editor to manually solve
conflicts and (after resolving) mark file as
resolved
$ git add <resolved-file>

…or if the conflicted file is no longer
required
$ git rm <resolved-file>

Patching

Create a patch against a specified base
$ git format-patch <base> --stdout

> <patch-name>.patch
Take a look at the change set in a patch
$ git apply --stat <patch-file>

Test if a patch is going to cause collisions
$ git apply --check <patch-file>

Apply a patch as the original sequence of
commits that are packaged in it
$ git am <patch-file>

Apply a patch as the original sequence of
commits that are packaged in it and keep
the original timestamps
$ git am --committer-date-is-

author-date <patch-file>

Undo

Discard all local changes in your working
directory
$ git reset --hard HEAD

Discard local changes in a specific file
$ git checkout HEAD <file>

Revert a commit (by producing a new
commit with contrary changes)
$ git revert <commit>

Reset to a previous commit…
…and discard all changes since then
$ git reset --hard <commit>

…and preserve all changes as unstaged
changes
$ git reset <commit>

…and preserve uncommitted local
changes
$ git reset --keep <commit>

Access the local action history (and
potentially save lost work)
$ git reflog

Remove all untracked local files
$ git clean -f

Check which local files would be removed
$ git clean -n

Logging

Limit number of commits to be shown
$ git log -<limit>

Condense each commit to a single line
$ git log --oneline

Include which files were altered and the
relative number of lines that were added
or deleted from each of them
$ git log --stat

Display the full diff of each commit
$ git log -p

Search for commits by a particular author
$ git log --author="<pattern>"

Search for commits with a commit
message that matches a pattern
$ git log --grep="<pattern>"

Show commits that occur between
<since> and <until>. Arguments can be a
commit ID, branch name, HEAD, or any
other kind of revision reference
$ git log <since>..<until>

Only display commits that have the
specified file
$ git log -- <file>

Draw a text-based graph of commits on
left side of commit messages.
$ git log --graph

Add names of branches or tags of
commits shown next to the graph
$ git log --graph --decorate

Stashing

Temporarily store all modified tracked
files
$ git stash

Restore the most recently stashed files
and throw away the stashed change set
$ git stash pop

Restore the most recently stashed files
and keep the stashed change set
$ git stash apply

List all stashed change sets
$ git stash list

View contents of a stash change set
git stash show -p stash@{<stash

id>}

Discard the most recently stashed change
set
$ git stash drop

Miscellaneous

List all ignored files in this project
$ git ls-files --other --ignored -

-exclude-standard

Find the hash of the common ancestor of
two commits
git merge-base --octopus <sha1>

<sha1>

Show the contents of a commit or tag
$ git show <identifier>

goo.gl/VaDaHw

